Page numbers followed by f denotes a figure and the letter t denotes a table

A

Abacavir, 331, 331f

Absorption, distribution, metabolism, and elimination (ADME), 17

   SARs and, 320–323, 321f, 322f, 324t

Acetaminophen

   conjugation of, 283f

   glutathione conjugation of, 291–292, 291f

   N-oxidation of, 265, 265f

   sulfate conjugation of, 287f

Acetazolamide, 337

Acetic acid, 148f

   for organic salts, 137t

Acetohexamide, 279f

Acetone, 150

Acetonide, 150, 150f

Acetylation, 292–293, 292f–294f

Acetylcholine, 18–19, 19f

   conformational isomers of, 230, 231f

   homologation and, 339, 340f

   neostigmine and, 170–171, 171f

Acetylcholinesterase

   neostigmine and, 170–171, 171f

   phosphorylation of, 172, 172f

Acidic functional groups, 26–27, 27f

   in amino acids, 177–178, 177f

   ARBs and, 328f

   drug interactions and, 326

   in enzymes, 177–178, 177f

   Henderson-Hasselbalch equation for, 88–90, 89f

   identification of, 52–61

   ionization of, 110, 174–175, 175t

   pKa of, 71–72, 72f, 86–87

   in proteins, 177–178, 177f

   salts from, 75–76, 75f, 136–137, 137t

   therapeutic significance of, 72–76, 73f–75f

Active conformation, 233

Acylation, 168–171, 169f–171f

Acyl chloride, 271f

Acyl group, covalent bonds and, 168–171, 169f–171f

Adenine, 12, 13t

Adenosine, 288f

Adenosine diphosphate (ADP), 173

Adenosine monophosphate (AMP), 335, 336f

α adrenergic receptors, 31, 31f

   diastereomers of, 225, 225f

   homologation and, 338

β adrenergic receptors, 31, 317, 372–375

   diastereomers of, 225, 225f

   homologation and, 338

Adverse drug reactions

   with acidic functional groups, 75

   of heparin, 115–116

   SARs and, 323–326, 325f, 326f

Alanine, 16, 38, 217

   binding interactions of, 196t

Albumin, 73

Albuterol, 31, 31f

   aliphatic amines and, 63–64, 64f

   enantiomers of, 216, 221, 221f

   hydroxyl group and, 266–268, 266f–268f

   oxidation of, 266–267, 266f

Alcohol dehydrogenase (ADH), 248–249, 266–268, 266f, 267f

Aldehyde

   carbonyl group of, 20

   charge transfer reactions of, 195f

   electron withdrawing functional groups of, 23, 24f

   ketone reduction and, 272f

   oxidative deamination of, 258

   reduction of, 272–273, 272f, 273f

   sugars and, 5

Aldehyde dehydrogenase (ALDH), 248–249, 266–268, 266f–268f, 272f

Aldoses, 5

Alendronate sodium, 74f

Alendronic acid, 140, 141f

Alicyclic amines, 62–64, 63f, 64f, 175t

Alicyclic carbon, 256–257, 256f, 257f

Alicyclic rings, 140f

   geometric isomers of, 226–227, 227f

   lipophilic functional groups and, 30, 30f

   numbering of, 4

Aliphatic amines, 62–64, 63f, 64f

   ionization of, 175t

   pKa of, 71t

Aliphatic carbon, 253–257, 254t, 255f–257f

Aliphatic chains, 189f, 190–192, 190f

Aliphatic hydroxyl groups, 60

Aliphatic rings, 226–227

Aliskiren, 359–362

Alkenes, 252, 252ff, 253f

Alkylation, 168, 168f

Alkyl chains, 30, 30f, 140f

Alkyl group

   charge transfer interactions of, 194f

   electron donating functional groups and, 23

   nitrogen and, 62

Alpha/beta (α/β) designation, 7, 8

Alpha (α) designation, 6–9, 7f

   for glycosidic bonds, 9, 9f

Alprostadil, 52–53, 53f

Amantadine, 263, 263f

Amide group, 140f

   carbonyl group of, 20

   charge transfer reactions of, 195f

   electron withdrawing functional groups of, 23, 24f

   as hydrogen bond acceptor, 183f, 186f

   as hydrogen bond acceptor/donor, 183f

   hydrolysis of, 278–279

   nitrogen and, 69, 70

   oxidation of, 258–265, 259f, 260f, 262f–265f

Amidine group, 66–67, 66f, 140f

   ionization of, 175t

   pKa of, 71t

   resonance delocalization of, 67

Amines, 140f. See also Aromatic amines

   biological target selectivity and, 31

   charge transfer interactions of, 194f

   in gentamicin, 135

   ion-dipole interaction with, 131

   methylation of, 294, 295

   oxidation of, 258–265, 259f, 260f, 262f–265f

   pKa and pH of, 99

Amino acids

   acidic functional groups in, 177–178, 177f

   basic functional groups in, 176, 176f

   binding interactions of, 196t

   conjugation of, 281t, 288–290, 288f, 289f

   enantiomers of, 217

   functional groups on, 36–40, 37f

   ionic bonds of, 176, 176f

   peptides from, 10–12, 10f

Amino terminus, 10, 11f

Amiodarone, 136f

Amitriptyline, 227–228, 227f, 261, 262f

Amlodipine, 361

Amoxicillin, 19, 19f, 150–151, 151f

Amphetamine, 259f

Ampicillin, 7f, 19, 19f, 150–151, 151f

Amrinone lactate, 132f

Angiotensin converting enzyme (ACE)

   aliskiren and, 359–360

   complexation and, 199, 199f

   enalaprilat and, 12

   inhibitors, 319–320, 320f

   tripeptides and, 11

Angiotensin I, 11, 12f

Angiotensin II, 11

Angiotensin II receptor blockers (ARBs), 327–329, 328f, 335–336

Aniline group, 140f, 194f. See also Aromatic amines

Anomeric carbon, 7

Anomers, 7

Antacids, 117

Antihistamines, 325f

Antivirals, 18

Arginine, 40

   binding interactions of, 196t

   cation–π interaction of, 193

   guanidine group and, 67, 67f, 116

   ionic bonds of, 176, 176f

Aripiprazole, 362–364

Aromatic amines, 64–65, 64f, 65f

   of bimatoprost, 143

   as hydrogen bond acceptor/donor, 183f

   ionization of, 175t

   pKa of, 71t, 92

   sulfate conjugation and, 286, 287f

Aromatic heterocycles

   ionization of, 175t

   nitrogen in, 68–69, 68f, 69f

   pKa of, 71t

Aromatic hydroxylation, 250–252, 251f, 252f

Aromatic nitrogen, 258–265, 259f, 260f, 262f–265f

Aromatic rings, 140f

   aryl-aryl stacking interactions of, 192–193, 192f, 193f

   charge transfer interactions of, 193–195, 194f, 195f

   electron donating functional groups and, 23, 23f

   homologation and, 339

   for hydroxyl group, 58–60, 58f, 59f

   lipophilic functional groups and, 30, 30f

   of methylsalicylate, 114

   mixed-function oxidases of, 246

   of nitrile group, 20, 21f

   oxidation of, 250–252, 251f, 252f

   of phenolic group, 20

   pKa and pH of, 99

   position designation for, 4–5

   van der Waals interactions of, 189, 189f, 190–192, 190f

Aryl-aryl stacking interactions, 192–193, 192f, 193f

Asparagine, 40

   binding interactions of, 196t

   dipole-dipole interactions of, 181

Aspartic acid, 39

   binding interactions of, 196t

   histidine and, 177, 177f

Aspirin

   acylation of, 170, 170f

   covalent bonds of, 166, 167f

   hydrolysis of, 275

Asthma, 17–18, 31, 317, 338

Atenolol

   oxidative N-dealkylation of, 260, 261

   SARs of, 318f

Atomoxetine

   cation–π interaction of, 193, 193f

   conjugation of, 283f

   oxidative deamination of, 259f

Atorvastatin, 138t, 299–300

ATP, methylation of, 295, 295f

Azide, 186f, 187

Azo group, 273–274, 274f

B

Baclofen, 259f

Balsalazide, 273, 273f

Basic functional groups, 26–27, 27f

   in amino acids, 176, 176f

   drug interactions and, 326

   Henderson-Hasselbalch equation for, 88–90, 89f

   identification of, 52–72

   ionization of, 110, 174–175, 175t

   pKa of, 71–72, 74f, 86–87

   resonance delocalization, 67

   salts from, 75–76, 75f, 136–137, 137t

   therapeutic significance of, 72–76, 73f–75f

   thioridazone and, 128

Beclomethasone dipropionate, 149, 149f, 324t

Benign prostatic hyperplasia (BPH), 319

Benzimidazole rings, charge transfer interactions of, 194f

Benzodiazepines, 65, 65f

Benzoic acid, 148f

Benzothiazole rings, 194

Benzoxazole rings, 194f

Benztropine, 187, 187f

Benzylic carbon, 253–256, 255f

Berg, J. M., 13

Beta (β) designation, 6–9, 7f

Bethanechol, 98

Bimatoprost, 139, 143, 143f

Binding interactions, 3–4. See also specific bond types

   of biological targets, 195–196, 196t

   SARs and, 316–320, 317f, 318f, 320f

Bioisoteres, 331–337

Bioisoteric replacement, 334

Biological targets

   active conformation of, 233

   acylation of, 170–171, 171f

   binding interactions of, 195–196, 196t

   covalent bonds and, 167

   functional groups and, 31, 31f, 36

   pharmacodynamic effects and, 17

   pKa and pH and, 114

   stereochemistry with, 175

   steric effects with, 175

Biopolymers, 17

Bisphosphonate, 186f

Boat conformation, 232, 232f

Bonds. See Binding interactions

Brentuximab vedotin, 344, 345f

Brimonidine, 67, 67f

Brimonidine tartrate, 132f

Bromine, 22, 22f, 179t, 180

Busulfan, 24

Butorphanol tartrate, 75f

C

Cahn, Robert, 217

Calcium hydroxide, 129, 137t

Candesartan, 147, 147f

Candesartan cilexetil, 147, 147f, 276, 277f

Captopril, 60, 60f

   complexation of, 199, 199f

   Henderson-Hasselbalch equation for, 95, 96

   methylation of, 296f

   oxidation of, 268–270

   pH and pKa of, 91, 92, 95, 96

   SARs of, 319–320, 320f

Carbamates

   as hydrogen bond acceptor, 183f

   as hydrogen bond acceptor/donor, 183f

   hydrolysis of, 279f

   isavuconazole and, 344, 344f

   nitrogen and, 69–70

Carbidopa, 52–53, 296f

Carbinolamine

   isavuconazole and, 344, 344f

   oxidative deamination of, 258

Carbon

   chirality of, 210–213, 211f

   electronegativity of, 179, 179t, 180

   mixed-function oxidases of, 246

   oxidation of, 253–257, 254f–257f

   van der Waals interactions of, 189f, 190–192, 190f

Carbonic anhydrase

   sulfonamide group and, 335, 337f

   thiazides and, 116, 116f

Carbonyl group

   chirality of carbon and, 211

   mixed-function oxidases of, 246

   nitrogen and, 70

   oxidation of, 254–255, 255f

   pH and pKa of, 107

   resonance of, 20, 21f

Carboprost tromethamine, 137t

Carboxylic acid

   as acidic functional group, 27f, 52–53, 53f

   amino acid conjugation and, 288, 290

   ARBs and, 329

   in cefepime, 135

   complexation of, 199, 199f

   electron donating functional groups and, 23, 23f

   esters of, 147, 147f

   as functional group, 18

   of furosemide, 185, 185f

   Henderson-Hasselbalch equation for, 88–90, 89f

   hydrolysis and, 277

   hydroxyl group and, 74, 266–268, 266f–268f

   ionic bonds of, 32, 114

   ionization of, 175t

   ketone reduction and, 272f

   for lipid solubility, 148, 148f

   methylene group and, 177

   nonclassical isosteres of, 337t

   noncovalent bonds of, 174

   oxidation of, 266–267, 266f

   oxidative dehalogenation and, 271f

   PABA and, 115, 115f

   in peptides, 10

   pH and pKa of, 71t, 101, 103, 114

   prodrug conversion of, 341

   resonance delocalization of, 67

   resonance of, 20

   tetrazole rings and, 58, 58f

Carboxyl terminus, 10–11, 11f

Catechol-O-methyltransferase (COMT), 294, 296

Catechol rings, 251–252, 252f

Catechols, 295, 296

   nonclassical isosteres of, 337t

Cation–π interaction, 193, 193f

Cefepime, 134–135, 135f

Cefoxitin, 33, 33f

   acylation of, 169, 169f

   covalent bonds of, 167, 167f

Cefprozil, 364–367

Celecoxib, 56, 56f

Cephalexin, 33, 33f, 275, 276f

Cephalosporins, 33, 33f

   covalent bonds of, 167

   drug interactions with, 325

Ceritnib, 69, 69f

Cetirizine, 52–53, 53f, 325f

Chain branching, 339–341, 341f

Chair-chair inversion, 232, 232f

Chair conformation, 232, 232f

Charge transfer interactions, 193–195, 194f, 195f

Chelation, 197–199, 197f, 198f

   drug interactions and, 325, 325f

Chemical antagonism, ionization and, 115–116, 116f

Chiral centers

   designations for, 216–220, 218f, 218t

   of diastereomers, 224–225

   of geometric isomers, 226

Chirality, 210–213, 211f

Chlorambucil, 167f, 168, 168f

Chloramphenicol, 271f, 274f

Chloramphenicol sodium succinate, 147, 147f

Chlorine

   aliphatic amines and, 64

   electronegativity of, 21, 22, 22t, 179t, 180

   SARs of, 318

Chlorpheniramine, 180–181

Chlorpromazine, 328, 328f, 340f

Chlorpropamide, 329–330, 329f, 334

Cholesterol, 18–19

   steroid nomenclature for, 9, 10f

Chronic obstructive pulmonary disease (COPD), 17–18, 31, 317

   homologation and, 338

Ciclopirox olamine, 137t

Cimetidine, 337

   pH and pKa of, 106

Ciprofloxacin, 72, 72f

   drug interactions of, 198–199

Cis isomers, 226–227, 227f, 228, 228f

Classical isosteres, 334–335, 334t, 335f

Clavulanate potassium, 137t

Clindamycin

   hydrogen bonds of, 187–188, 187f

   molecular modification of, 330, 330f

   prodrug conversion of, 342, 343f

Clomipramine hydrochloride, 137t

Clonidine, 72, 72f

Clonidine hydrochloride, 130f

Clopidogrel

   covalent bonds of, 167f

   CYP2C19 and, 298

   rearrangement reactions of, 173, 173f

Cocaine, 278

Complexation, 199, 199f

Conformational isomers, 228–236, 229f–232f, 234f, 235f

Conformational restriction, 2

   benefits of, 234–236, 234f, 235f

   molecular modification and, 327–328, 327f

   SARs and, 317–318

Conjugate base, 62

Conjugation, 280–297

   acetylation, 292–293, 292f–294f

   of amino acids, 288–290, 288f, 289f

   of glucuronic acid, 281–285, 281t, 283f–285f

   of glutathione, 290–292, 290f, 291f

   methylation, 294–296, 295f, 296f

   of sulfates, 285–287, 286f, 287f, 292

Copper, chelation of, 197, 197f

Covalent bonds, 166–173, 166t, 167f–173f

   acylation and, 168–171, 169f–171f

   alkylation and, 168, 168f

   concerns with, 166–167, 167f

   electrophilic functional groups and, 24

   of inorganic salts, 129

   ionization with, 174

   phosphorylation and, 171–172, 172f

   rearrangement reactions and, 173, 173f

   types of, 167–173, 168f–173f

C-terminus, 177, 177f

Cyclizine, 325f

Cyclohexane, 4

   chair-chair inversions of, 232

   conformational isomers of, 232, 232f, 233

   oxidation of, 257f

Cyclooxygenase, 32, 32f

   acylation of, 170, 170f

   conformational isomers of, 235, 235f

   covalent bonds and, 166

   enantiomers of, 222

   ionic bonds on, 114

Cyclopentane, 4

Cyclopentylpropionic acid, 148f

Cyclophosphamide, 345–346, 345f

CYP2C9, 297–298, 298f

CYP2C19, 298, 300

CYP2D6, 298, 299f, 300, 300f

CYP3A4, 299–300, 361

Cysteine, 39

   binding interactions of, 196t

   glutathione conjugation and, 290–291

   omeprazole and, 347, 347f

Cytochrome P450 (CYP450), 246–248, 247f, 248t, 249f

   for alkene oxidation, 252f

   for aromatic hydroxylation, 252f

   for carbonyl group oxidation, 254–255, 255f

   for hydroxyl group oxidation, 266–268, 266f–268f

   ketone reduction and, 272f

   metabolism and, 297–300

   N-oxidation by, 263f, 264f, 265f

   for O-dealkylation, 278

   oxidative deamination by, 259f

   for oxidative dehalogenation, 270–271, 271f

   for sulfur oxidation, 268–270, 269f, 270f

Cytosine, 12, 13t

D

Debye forces, 188

Deconjugation, 279, 280f

Deoxyribofuranose sugars, 6, 6f

Deoxyribonucleic acid (DNA), 12

   covalent bonds and, 166

   electrophilic functional groups and, 24

   functional groups on, 40–41, 41f

   hydrogen bonds of, 184, 184f

   molecular modification and, 330–331

   sulfate conjugation and, 286

Dewick, P. M., 5, 13

Dexamethasone, 98

Diastereomers, 224–228, 224f–228f

   enantiomers and, 224–225, 224f

   geometric isomers and, 228, 228f

Diazepam, 65, 65f

   aromatic hydroxylation of, 251f

   conjugation of, 285

   heparin and, 136f

   oxidative N-dealkylation of, 259, 260f

β-dicarbonyl groups, 53–54, 55f, 140f

   enantiomers of, 215

   pKa of, 71t

Diclofenac, 32, 32f

   amino acid conjugation of, 289f

   conformational isomers of, 235, 235f

   enantiomers of, 223f

   SARs of, 318

Dicyclomine, 257f, 338, 339

Diethylstilbestrol, 228, 228f

1,4-dihydropyridine (1,4-DHP), 318–319, 318f

5α-dihydrotestosterone, steroid nomenclature for, 9, 10f

Dipeptides, 10

Diphenhydramine, 325f

Diphenoxylate, hydrolysis of, 277f, 278

Dipole-dipole interactions, 27, 180–181. See also Hydrogen bonds

   charge transfer interactions as, 193–195, 194f, 195f

Dipole-induced dipole interaction, 188–190, 189f, 190f

Dipole interactions, 179–188, 179t, 183f–187f. See also Hydrogen bonds

   van der Waals interactions, 188–190, 189f, 190f

Disopyramide, 221, 221f

Disopyramide phosphate, 137t

Disulfide bond

   of cysteines, 39

   reductions of, 274

D/l designation, 8, 216–220, 218f, 218t

Dopamine

   alpha/beta (α/β) designation of, 7f

   methylation of, 294

Double bonds, 3–4

   for conformational restriction, 327–328

Doxepin, 227–228, 227f

Doxycycline, 35, 35f, 322–323, 322f

DrugBank, 13

Drug interactions

   chelation and, 198–199

   of organic salts, 134–135, 135f, 136f

   pH and, 326

   pKa and pH and, 116–117

   SARs and, 323–326, 325f, 326f

Duloxetine, 272, 273f

Duration of action

   of pharmacodynamic effects, 17

   pKa and pH and, 112–113, 113f

E

Easson, Leslie, 222–223

E isomers, 227–228, 227f

Electrolytes, 59

Electron donating functional groups, 23, 24f

   sulfonamides and, 56

Electronegativity, 21–22, 22t

Electron withdrawing functional groups, 23, 24f

   penicillin G and V and, 25–26, 25f, 26f

   phenols and, 59–60

   sulfonamides and, 56

Electrophilic functional groups, 24–26, 24f–26f

   glutathione conjugation and, 291–292

   sulfate conjugation and, 287f

Enalaprilat, 11, 12f, 18

   enantiomers of, 213–215, 215f

   SARs of, 319–320, 320f

Enantiomers, 8, 213–224, 214f, 215f, 218t, 221f–223f

   designations for, 216–220, 218f, 218t

   diastereomers and, 224–225, 224f

   pharmacological and therapeutic differences between, 220–224, 221f–223f

   steric hindrance of, 223–224, 223f

Encainide, 264, 264f

Enflurane, 271f

Enol form, of β-dicarbonyl groups, 54

Enterohepatic circulation/recycling, 285

Enzymes. See also specific types

   acidic functional groups in, 177–178, 177f

   as biological targets, 17, 36

   enantiomers and, 224

   ionic bonds of, 176, 176f

   metabolism and, 245

   for oxidation, 246–249, 247f, 248t, 249f

   sulfate conjugation and, 286

Epinephrine, 31, 31f

   enantiomers of, 222–223, 222f

   homologation of, 338

   methylation of, 294

   SARs of, 316–317, 317f

Epirubicin, 279f

Eplerenone, 72, 72f

Eprosartan, 328, 328f

Erythromycin, 133, 134f

Erythromycin stearate, 133

Esmolol, 275, 276f

Essentials of Foye’s Principles, 13

Ester group, 140f

   carbonyl group of, 20

   of carboxylic acid, 147, 147f

   electron withdrawing functional groups of, 23, 24f

   as electrophilic, 24

   as hydrogen bond acceptor, 183f

   hydrolysis of, 276, 277f

   lipophilic functional groups and, 28–29

   organic salts and, 134

   prodrug conversion of, 341–342, 342t

   for water and lipid solubility, 146–149, 147f–149f

Estradiol, 59–60, 59f

   SARs of, 321, 321f

   steroid nomenclature for, 9, 10f

Estradiol valerate, 148, 148f

Estrone, 141, 141f, 287f

Estrone sodium sulfate, 61f

Estrone sulfate, 280f

Ether group, 140f

Ethers

   charge transfer interactions of, 194f

   CYP450 and, 268f

   as hydrogen bond acceptor, 183f

   oxygen of, 139

Ethinyl estradiol, 321f, 322

Ethylenediaminetetraacetic acid (EDTA), chelation of, 197, 197f

Ethyl group, 277

Excitable membranes, 17

Ezetimibe

   dipole-dipole interactions of, 181

   hydrogen bonds of, 187, 187f

F

Fβ adrenergic receptors, 31

Fenofibrate, 147f, 148

   hydrolysis of, 276, 277f

   SARs of, 324t

Fenofibric acid, 147f, 148, 324t

Fenoprofen, 32, 32f

   aromatic hydroxylation of, 251f

   conformational isomers of, 235, 235f

Fexofenadine, 325f

First-pass metabolism, 299

Fischer, Hermann Emil, 216

Fischer projections, 216–217

Flavin monooxygenase (FMO), 248, 250f

   N-oxidation by, 264f

   for sulfur oxidation, 268–270, 268f, 269f

Fluconazole, 326, 326f

Fluocinolone acetonide, 150f

Fluorine

   electronegativity of, 21, 22, 22t, 179t, 180

   as hydrogen bond acceptor, 139, 183f

   lipophilic functional groups and, 28

Fluoroquinolones, drug interactions with, 198–199, 325, 325f

Fluoxetine, 18

Flurbiprofen

   enantiomers of, 221, 223f

   pH and pKa of, 103

Fluvastatin, 138t, 378–380

Fluvoxamine, 283f

Formaldehyde

   methenamine and, 117

   prodrug conversion of, 346–347, 346f

Fosamprenavir, 279f

Fosamprenavir calcium, 61f

Fosphenytoin, 342, 343f

Fosphenytoin sodium, 137t

Free acid, 129

Free base, 110, 133

Frovatriptan, 68, 68f

Fructofuranose sugars, 6, 6f

Fructose, 6, 6f

Fumarate, 226, 226f

Fumaric acid, 137t

Functional groups. See also specific types

   on amino acids, 36–40, 37f

   biological targets and, 31, 31f, 36

   characteristics and roles of, 15–50

   chemical properties of, 19–33

   for COPD and asthma, 17–18

   defined, 15–17

   on DNA, 40–41, 41f

   versus drug molecules, 72, 72f

   electron donating, 23, 24f, 56

   electronic effects of, 20–26, 21f–26f, 22t

   electron withdrawing, 23, 24f, 25–26, 25f, 26f, 56, 59–60

   electrophilic, 24–26, 24f–27f

   hydrogen bonds of, 27–28, 28f

   ionization of, 73–74, 109–110

   molecular modification and, 328–331, 328f–331f

   with nitrogen, 70–72, 71t, 72f

   noncovalent bonds and, 174

   nucleophilic, 24–26, 24f–27f, 29f, 30f, 60

   on ribonucleic acid (RNA), 40–41

   on RNA, 41f

   solubility effects in, 26–30, 27f–30f

   steric effects of, 30–33, 31f–33f

   for water and lipid solubility, 149–151, 150f, 151f

Furanose rings, 6

Furan rings, 194f

Furosemide, 185, 185f

G

Gabapentin, 52–53, 53f, 63–64, 64f

Gauche conformation, 231, 231f

Gemfibrozil, 72, 72f

Gentamicin, 74f

   cefepime and, 134–135, 135f

   pH and pKa of, 110, 110f

Geometric isomers, 226–228, 227f

   diastereomers and, 228f

Glucocorticoids

   hydrolysis of, 276, 277f

   lipid solubility of, 148, 149f, 150, 150f

Glucopyranose sugars, 6, 6f, 7–8

Glucose, 6, 6f

   alpha/beta (α/β) designation of, 7–8

Glucuronic acid, 281–285, 283f–285f

   conjugation of, 281t

Glucuronide, 281t, 282–285, 283f–285f

Glutamic acid, 39

   acidic functional groups in, 177, 177f

   binding interactions of, 196t

   ionization of, 178, 178f

Glutamine, 40

   amino acid conjugation of, 288f, 289f

   binding interactions of, 196t

Glutathione, 24

   aromatic hydroxylation of, 251, 252f

   conjugation of, 281, 281t, 290–292, 290f, 291f

   sulfate conjugation and, 286

Glyburide

   molecular modification of, 329–330, 329f

   pH and pKa of, 107

Glyceraldehyde, 216

Glycine, 37

   amino acid conjugation of, 288f, 289f

   binding interactions of, 196t

Glycosides, 279f

Glycosidic bonds, 9, 9f

Gout, 75, 111–112

Graham Solomons, T. W., 5, 13

Grimm’s Hydride Replacement Law, 331–334, 331f, 332t

Guanabenz acetate, 137t

Guanidine group, 66–67, 67f, 140f

   in arginine, 116

   ionization of, 175t

   pKa of, 71t, 116

   resonance delocalization of, 67

Guanine, 12, 13t

Guanosine monophosphate (GMP), 335, 336f

H

H2 receptor antagonists, 117, 326, 336–337, 337f

Halcinonide, 150f

Halogens, 140f

   charge transfer reactions of, 195f

   electronegativity of, 22, 22t

   electron withdrawing functional groups of, 23, 24f

   as electrophilic, 24

   nonclassical isosteres of, 337t

   oxidative dehalogenation of, 270–271, 271f

Haloperidol, 136f

Haloperidol decanoate, 148, 148f, 149–150

Hemiacetal sugars, 6, 6f

Hemiketal sugars, 6, 6f

Henderson-Hasselbalch equation, 85–86, 88–92, 89f, 100–108

   for captopril, 95, 96

   SARs and, 312

   for tamoxifen, 96

Heparin

   chemical antagonism of, 115–116, 116f

   drug interactions with, 135, 136f

Heterocyclic nitrogens, 183f

Heterocyclic rings

   charge transfer interactions of, 193–195, 194f, 195f

   numbering of, 5

   pH and pKa of, 102

Histidine, 40

   angiotensin I and, 11

   aryl-aryl stacking interactions of, 192–193

   aspartic acid and, 177, 177f

   binding interactions of, 196t

   cation–π interaction of, 193

   ionic bonds of, 176–177, 176f

   ionization of, 177, 177f

HMG-CoA reductase inhibitors, 138, 138t

Homocysteine, 39

Homologation, 338–341, 339f–341f

Human immunodeficiency virus (HIV) protease inhibitors, 383–385

Human immunodeficiency virus (HIV) reverse transcriptase inhibitors, 331

Hydralazine, 65, 65f, 66

   acetylation of, 292, 292f

   conjugation of, 283f

Hydrazide group, 68, 175t

Hydrazine group, 65–66, 65f, 66

   carbidopa and, 51

   as hydrogen bond acceptor/donor, 186f

Hydrobromic acid, 129

Hydrocarbon chains, 338

Hydrocarbon rings, 188–190, 189f, 190f

Hydrochloric acid, 128, 129, 137t

Hydrocortisone, 148, 149f

Hydrocortisone butyrate, 149, 149f

Hydrogen

   chirality of carbon and, 212

   electronegativity of, 179, 179t, 180

Hydrogen bond acceptor, 28, 29f, 182–183, 183f, 186f

   fluorine as, 139

Hydrogen bond donors, 28, 29f, 182–183, 183f, 186f

Hydrogen bonds, 181–187, 183f–187f

   doxycycline and tetracycline and, 35, 35f

   of functional groups, 27–28, 28f

   hydrophilic functional groups and, 139

   of hydroxyl group, 20, 131

   lactones and, 142

   metabolism and, 244, 245f

Hydrolysis, 275–279, 276f, 277f, 279f, 280f

   prodrug conversion and, 343

Hydrophilic functional groups, 26–28, 27f, 28f

   of bimatoprost, 143, 143f

   drug molecule analysis for, 139, 140f

   hydrogen bonds and, 139

   organic salts in, 131, 132f

   with ortho designation, 141

   for penicillin G, 150–151, 151f

Hydrophobic functional groups, 28–30, 29f, 30

   drug molecule analysis for, 139, 140f

   ionic bonds of, 114, 114f

   van der Waals interactions of, 190–192, 191f

3-hydroxy-3-methylglutaryl CoA (HMG-CoA), 315, 316f

Hydroxylamine

   N-oxidation of, 263, 263f, 264

   reduction of, 274f

   sulfate conjugation of, 287f, 292

Hydroxyl group, 140f

   in alendronic acid, 140, 141f

   aliphatic amines and, 64–65

   alpha/beta (α/β) designation of, 7–8

   aromatic rings for, 58–60, 58f, 59f

   carboxylic acid and, 74

   charge transfer interactions of, 194f

   chirality of carbon and, 211

   conjugation of, 284

   doxycycline and tetracycline and, 35, 35f

   electron withdrawing functional groups of, 23, 24f

   erythromycin and, 133, 134f

   as hydrogen bond acceptor/donor, 183f

   hydrogen bonds of, 20, 131

   ketone reduction and, 272f

   methylation of, 294

   noncovalent bonds of, 174

   as nucleophilic, 24

   oxidation of, 266–268, 266f–268f

   of phenol, 139

   phenyl rings and, 22–23, 22f

   of pravastatin, 142, 142f

   prodrug conversion in, 341

   resonance of, 20, 21f

   SARs of, 321, 321f, 322–323, 322f

   sulfate conjugation of, 287f

Hypertension, 319, 359–362

Hyperuricemia, 75

Hypoxanthine, 335

I

Ibandronate sodium, 74f

Ibuprofen, 1

   alpha/beta (α/β) designation of, 7f

   enantiomers of, 221

Imidazole ring

   charge transfer interactions of, 194f

   of histidine, 176–177

   ketoconazole and, 117

Imide group

   as acidic functional group, 27f

   β-dicarbonyl groups and, 53, 55f

   nitrogen and, 70

   pH and pKa of, 71t, 102

Imine group, 65–66, 65f

   ionization of, 175t

   pKa of, 71t

Imipramine, 65f

Indole rings

   aromatic heterocycles and, 68

   charge transfer interactions of, 194f

Indomethacin, 285

Induced dipole-induced dipole interactions, 10f, 188–190, 189f

Inductive effect, 22–23

   electron withdrawing functional groups and, 23

Influenza, 18

Ingold, Christopher, 217

Inorganic salts, 129–131, 130f

   for lipid solubility, 146

Intensity, of pharmacodynamic effects, 17

Interferon-alpha, 343–344

Intrinsic induction, 21

Iodine, 22, 22t, 179t, 180

Ion-dipole interactions, 180–181

   with amine, 131

   with hydrophilic functional groups, 26

   ionic bonds and, 175

Ionic bonds, 175–179, 176f–178f

   of carboxylic acid, 32

   of inorganic salts, 129

   ion-dipole interactions and, 175

   pKa and pH and, 114–115

Ionization

   of acidic functional groups, 110, 174–175, 175t

   of basic functional groups, 110, 174–175, 175t

   chemical antagonism and, 115–116, 116f

   with covalent bonds, 174

   of functional groups, 73–74, 109–110

   of glutamic acid, 178, 178f

   of histidine, 177, 177f

   lipid bilayers and, 110

   of lipophilic functional groups, 113

   of penicillin V, 129

   of phenols, 113

   of thioridazine, 129

Irbesartan, 328f

   conjugation of, 283f

   enantiomers of, 213, 214f

Isavuconazole, 344, 344f

Isavuconazonium sulfate, 344, 344f

Isoleucine, 38

   binding interactions of, 196t

Isomeric sugars, 7

Isoniazid, 69f, 293, 293f

Isopropyl group

   biological target selectivity and, 31

   homologation and, 338

   prodrugs, 147f, 148

Isoproterenol, 31, 31f

   hydrogen bonds of, 183, 184f

   methylation of, 294

   SARs of, 317, 317f, 318f

Isosteres, 331–337, 331f, 332t, 333t, 334t, 335f–337, 337t

Isoxazole rings, 23, 24f

Itraconazole, 299–300

K

Keesom forces, 188

Ketoconazole, 117, 326, 326f

Keto form, of β-dicarbonyl groups, 54, 55f

Ketones

   charge transfer reactions of, 195f

   as hydrogen bond acceptor, 183f

   hydroxyl group and, 266–268, 266f–268f

   oxidative deamination of, 258

   reduction of, 272–273, 272f, 273f

   sugars and, 5–6

Ketoprofen

   aromatic hydroxylation of, 251f

   enantiomers of, 221, 222f

Ketose, 5–6

L

Labetalol

   diastereomers of, 225, 225f

   sulfate conjugation of, 287f

β-lactams, 33, 33f. See also specific drugs

   acylation of, 169, 169f

   covalent bonds of, 167

   hydrolysis of, 278–279

   SARs of, 314–315, 314f, 315f, 320–321

Lactones, 142, 261, 262f

Lamivudine, 331, 331f

Langmuir, Irving, 331–332

Lansoprazole, 117

Lead. See Molecular modification

Lemke, 5

Leucine, 38

   binding interactions of, 196t

Levonorgestrel, 367–370

Levothyroxine, 59–60, 59f, 113, 113f

Lidocaine, 74f

   chain branching of, 341, 341f

   hydrolysis of, 275, 276f

   metabolism of, 245–246, 245f

Lincomycin, 330, 330f

Liothyronine, 59–60, 59f, 113, 113f

Lipid bilayers, ionization and, 110

Lipid solubility. See also Lipophilic functional groups

   drug interactions and, 326

   enhancement benefits to, 154

   metabolism and, 152–154, 152f, 153f, 244

   optimizing, 146–152, 147f–151f

   prodrug conversion and, 342t, 343

   SARs and, 312, 323

   water solubility and, 144–145, 145f

Lipophilic functional groups, 28–30, 29f, 30f

   drug molecule analysis for, 139

   homologation and, 338

   ionization of, 113

   organic salts in, 132–133, 132f

   pH and pKa of, 113

   of simvastatin, 142, 142f

Lomustine, 213

London dispersion forces, 188

Losartan, 188–190, 189f, 256f

Lovastatin, 18–19, 19f, 138t

Lysine, 40

   binding interactions of, 196t

   cation–π interaction of, 193

   ionic bonds of, 176, 176f

M

Maleate, 226, 226f

Mechanism of action

   of busulfan, 24

   of pharmacodynamic effects, 17

   of thiazides, 117

Mechlorethamine, 345–346, 345f

Medicinal chemistry, 1

Mefenamic acid, 318

Meperidine, 74f

   oxidative N-dealkylation of, 259, 260f

   van der Waals interactions of, 189, 189f, 191, 192f

Meprobamate, 283f

6-mercaptopurine, 335, 336f

Metabolism, 243–310. See also Conjugation; Oxidation

   affecting factors on, 297–300, 298f–300f

   chirality of carbon and, 211

   cytochrome P450 (CYP450) and, 297–300

   enzymes and, 245

   general concepts of, 244–246, 245f

   hydrolysis, 275–279, 276f, 277f, 279f, 280f

   lipid solubility in, 244

   phase II of, 280–297

   phase I of, 246–280

   of prodrugs, 246

   reduction, 272–275, 272f–275f

   solubility and, 152–154, 152f, 153f

   steric hindrance on, 33, 33f

   water solubility in, 244

meta designation, 4–5

   aromatic hydroxylation and, 250–251

   SARs and, 319

Metaproterenol, SARs of, 317, 317f

Metformin, 67f

Metformin, guanidine group and, 67

Methacholine, 18–19, 19f

   enantiomers of, 221, 221f

Methadone, reduction of, 272, 273f

Methdilazine, 340f

Methenamine

   formaldehyde and, 117

   prodrug conversion of, 346–347, 346f

Methionine, 39

   binding interactions of, 196t

   methylation of, 295f

Methotrexate, 111

Methotrexate, pH and pKa of, 111

Methoxy group

   electron donating functional groups and, 23, 23f

   electron withdrawing functional groups of, 23, 24f

   quinidine and, 68

α-methyl acetic acids, enantiomers of, 223–224, 223f

Methylation, 294–296, 295f, 296f

   conjugation of, 281t

Methyldopa, methylation of, 294

Methyldopamine, enantiomers of, 222f, 223

α-methyldopamine, alpha/beta (α/β) designation of, 7f

Methylene group, 177

   chirality of carbon and, 212

   homologation with, 338–341, 339f–341f

   van der Waals interactions of, 192

Methyl group, 18–19, 19f

   amino acid conjugation of, 290

   biological target selectivity and, 31

   charge transfer interactions of, 194f

   methylation of, 295

   morphine and, 34, 34f

   SARs of, 318

   in simvastatin, 142, 142f

   testosterone and, 34, 34f

Methylsalicylate, 114

Methyltestosterone, 321f, 322

Methyl-tetrazole-thiomethyl (MTT) group, 323–324

Metiamide, 336, 337

Metoclopramide, hydrogen bonds of, 185–186, 185f

Metoprolol

   chirality of carbon of, 210–212, 211f

   CYP2D6, 298, 299f

Metoprolol tartrate, 137t

Metronidazole, reduction of, 274f

Minoxidil, sulfate conjugation of, 287f

Mitoxantrone, 193

Mixed-function oxidases, 246

Molecular modification, 326–347

   conformational restriction and, 327–328, 327f

   functional groups and, 328–331, 328f–331f

   homologation, 338–341, 339f–341f

   of isosteres, 331–337, 331f, 332t, 334t, 335f–337f, 337t

   prodrug conversion from active drugs, 341–347, 342t, 343f–347f

   of sulfonylureas, 329–330, 329f

Monoethylglycinexylidide, 341, 341f

Monomethylauristatin E (MMAE), 344, 345f

Montelukast, 370–372

Morphine

   conjugation of, 284, 285

   deconjugation of, 280f

   homologation of, 339, 339f

   hydrogen bonds of, 182

   methyl group and, 34, 34f

Morphine sulfate, 130f

Mutarotation, 7

N

Nabumetone, 346, 346f

N-acetyltransferase (NAT), 292–293, 292f

Nadolol, 372–375

Naphazoline, 66, 66f

Naproxen, 1

   alpha/beta (α/β) designation of, 7f

   enantiomers of, 221, 222f

   SARs of, 324t

Naproxen sodium, 130f

   SARs of, 324t

Nateglinide

   conjugation of, 283f

   ionic bonds of, 176, 176f

N-dealkylation, 289–290

Nefazodone, 195, 195f

Neostigmine

   acylation of, 170–171, 171f

   hydrolysis of, 279f

Neostigmine bromide, 72, 72f

   conformational isomers of, 234, 235f

Newman projections, 230, 231f

Niacin, oxidative N-dealkylation of, 261, 262f

Nicardipine, oxidative N-dealkylation of, 260, 260f

Nifedipine, SARs of, 318, 318f

Nimodipine, acetylation of, 293, 294f

Nitrile group

   aromatic rings of, 20, 21f

   charge transfer reactions of, 195f

   electron withdrawing functional groups of, 23, 24f

   nonclassical isosteres of, 337t

   pKa and pH of, 99

   resonance of, 20, 21f

Nitrofurantoin, 274, 274f

Nitrogen, 70

   alkyl group and, 62

   amidine group and, 66–67

   in aromatic heterocycles, 68–69, 68f, 69f

   chelation and, 197

   β-dicarbonyl groups and, 53, 54

   electronegativity of, 21, 22, 22t, 179, 179t

   guanidine group and, 67, 67f

   as hydrogen bond acceptor, 183

   N-oxidation and, 262–265, 263f–265f

   resonance delocalization of, 67

Nitro group

   charge transfer reactions of, 195f

   electron withdrawing functional groups of, 23, 24f

   reduction of, 273–274, 274f

   SARs of, 318

Nitrone, N-oxidation of, 264, 264f

Nitroso, N-oxidation of, 263, 263f

Nitroso group, nitro group reduction and, 274, 274f

Nizatidine, 336

N-methyltransferase, 294

Nonclassical isosteres, 334, 335–336, 338

Noncovalent bonds, 166t, 173–200. See also Dipole interactions; Ionic bonds

   functional groups and, 174

Nonelectrolytes, 59

Nonsteroidal anti-inflammatory drugs (NSAIDs)

   acylation of, 170, 170f

   conformational isomers of, 235, 235f

   drug interactions with, 326

   enantiomers of, 221–224, 223f

   prodrug conversion of, 346, 346f

   reductions of, 275

   SARs of, 318, 318f, 319

Norethindrone, sulfate conjugation of, 287f

N-oxidation, 262–265, 263f–265f

NPH insulin

   for lipid solubility, 148

   as lipid-soluble, 133

N-terminus, ionic bonds of, 176, 176f, 177

Nucleic acids

   binding interactions of, 196t

   as biological targets, 17

   nomenclature for, 12, 13t

Nucleophilic functional groups, 24–26, 24f–26f

   alkylation of, 168, 168f

   glutathione conjugation and, 291

   methylation of, 296

   thiols and, 60

Nucleosides, 12

O

Octapeptides, 10, 11f

O-dealkylation, 277f, 278

Ofloxacin, 376–378

Olamine, 137t

Omega (ω) designation, 6–8, 7f

Omeprazole, 117

   chirality of carbon of, 210, 211f

   prodrug conversion of, 347, 347f

Orbital hybridization, 3–4

Organic salts, 131–135

   drug interactions of, 134–135, 135f, 136f

   esters and, 134

   in hydrophilic functional groups, 131, 132f

   for lipid solubility, 146

   in lipophilic functional groups, 132–133, 132f

Organophosphates, 171

Orphenadrine, 64, 64f

ortho designation, 4

   aromatic hydroxylation and, 251–252

   hydrophilic functional groups with, 141

   SARs and, 317–318, 318f

Oseltamivir, 18, 277f, 388–390

Oxazole rings, 194f

Oxidation

   of alicyclic carbon, 256–257, 256f, 257f

   of aliphatic carbon, 253–256, 254t, 255f–257f, 256–257

   of alkenes, 252, 252f, 253f

   of amides, 258–265, 259f, 260f, 262f–265f

   of amines, 258–265, 259f, 260f, 262f–265f

   of aromatic nitrogen, 258–265, 259f, 260f, 262f–265f

   of aromatic rings, 250–252, 251f, 252f

   of benzylic carbon, 253–256, 254t, 255f

   of carbon, 253–257, 254f–257f

   of carbonyl group, 254–255, 255f

   CPY450 for, 246–248, 247f, 248t, 249f

   enzymes for, 246–249, 247f, 248t, 249f

   of hydroxyl group, 266–268, 266f–268f

   in metabolism, 246–271

   of sp2 hybridized centers, 253–256, 254t, 255f

   of sulfur, 268–270, 269f, 270f

Oxidative deamination, 258, 259f

Oxidative dehalogenation, 270–271, 271f

Oxidative N-dealkylation, 258–262, 259f, 260f, 262f

Oxime, 186f

2-oxoclopidogrel, 173, 173f

Oxygen

   chelation and, 197

   β-dicarbonyl groups and, 54

   electronegativity of, 22, 22t, 179, 179t

   of ethers, 139

   as hydrogen bond donor, 183

   inductive effect of, 23

Oxyphenbutazone, 54

P

Pamidronate disodium, 61f

para-aminobenzoic acid (PABA), 115, 115f

   HIV reverse transcriptase inhibitors and, 331

   SAR of, 313, 314, 314f

para designation, 4

Paroxetine, 251f

Partition coefficients

   for HMG-CoA reductase inhibitors, 138, 138t

   solubility and, 137–145, 138f, 140f–143f, 145f

Penicillamine, 60, 60f

   chelation for, 197, 197f

Penicillin G, 25–26, 25f, 26f

   alpha/beta (α/β) designation of, 7f

   hydrophilic functional groups for, 150–151, 151f

   SARs of, 324t

Penicillin G benzathine, 75f, 76

   for lipid solubility, 148

   as lipid-soluble, 132

   SARs of, 324t

Penicillin V, 25–26, 25f, 26f

   ionization of, 129

   salt form of, 128

Pentazocine, 285, 296f

Pentobarbital, 256f, 267f, 270f

Peptides

   designations for, 9–12, 10f–12f

   functional groups and, 36–40, 37f

Perindopril, 277f

Peroxide group, 197

pH

   antacids and, 117

   biological targets and, 114

   defined, 86–88

   drug interactions and, 116–117, 326

   drug therapy and, 108–118, 109f–111f, 113f–116f

   duration of action and, 112–113, 113f

   enantiomers and, 215

   Henderson-Hasselbalch equation for, 85–86, 88–92, 89f, 100–108

   ionic bonds and, 114–115, 175

   ionization and, 174–175

   partition coefficients and, 138

   pKa and, 92–98

   plasma proteins and, 113

   quantitative problems for, 98–108

   Rule of Nines for, 103–108

   SARs and, 312

   solubility effects of, 109–112, 109f–111f

   solving problems of, 85–125

   steric effects on, 86

Pharmacodynamics effects, 17

Pharmacogenomics, 297

Pharmacokinetic effects, defined, 17

Phase II metabolic transformations, 244

Phase I metabolic transformations, 243

Phenobarbital, 54, 55f, 73f

   pKa and pH of, 101–102, 112

Phenolic group, 58–60, 58f, 59f, 140f

   as acidic functional group, 27f

   aromatic hydroxylation of, 251–252

   aromatic rings of, 20

   charge transfer interactions of, 194f

   CYP450 and, 268f

   as hydrogen bond acceptor/donor, 183f

   hydroxyl group of, 139

   ionization of, 113, 175t

   pKa of, 71t

   sulfate conjugation of, 287f

Phenolic hydroxyl group, 30

   methylation of, 294–295

   sulfate conjugation of, 287f

Phenol-O-methyltransferase (POMT), 294

Phenothiazines

   chain branching of, 340–341, 341f

   conformational restriction of, 327–328

Phenylalanine, 38

   angiotensin I and, 11–12, 12f

   aryl-aryl stacking interactions of, 192–193

   binding interactions of, 196t

   cation–π interaction of, 193

   van der Waals interactions on, 189, 189f

Phenylephrine, aromatic hydroxylation of, 252, 252f

Phenylethyl group, 19–20, 22–23, 22f

Phenylpropanolamine, 296f

Phenyl rings, 20

   charge transfer interactions of, 194–195, 194f, 195f

   electron donating functional groups and, 23, 23f

   hydroxyl group and, 22–23, 22f

Phenytoin, 54, 55f

   chirality of carbon of, 211, 211f

   drug interactions with, 326

   prodrug conversion of, 342, 343f

Phenytoin sodium, 130f

Phosphates, 60–61, 61f

   binding interactions of, 196t

   hydrolysis of, 279f

   ionization of, 175t

   pKa of, 71t

3′-phosphoadenosine-5′-phosphosulfate (PAPS), 285, 286f

Phosphonates, 60–61, 61f

   ionization of, 175t

   pKa of, 71t

Phosphonic acid, 27f

5-phosphoribosyl 1-pyrophosphate (PRPP), 335, 336f

Phosphoric acid, 129, 137t

Phosphorus, 179t, 180

Phosphorylation, 171–172, 172f

Phosphoserine, 38–39

Phytonadione (vitamin K), 140–141, 141f

Pindolol, 74f

Pioglitazone, 283f

Piperidine rings, 192

Pitavastatin, 138t

Pitavastatin calcium, 137t

Pivalic acid, 148f

pKa

   of acidic functional groups, 71–72, 72f

   of basic functional groups, 71–72, 72f, 86–87

   biological targets and, 114

   defined, 86–88

   drug interactions and, 116–117

   drug therapy and, 108–118, 109f–111f, 113f–116f

   duration of action and, 112–113, 113f

   Henderson-Hasselbalch equation for, 85–86, 88–92, 89f, 100–108

   ionic bonds and, 114–115, 175

   ionization and, 174–175

   pH and, 92–98

   plasma proteins and, 113

   quantitative problems for, 98–108

   Rule of Nines for, 103–108

   SARs and, 312

   solubility effects of, 109–112, 109f–111f

   solving problems of, 85–125

   steric effects on, 86

   structure activity relationships (SARs) and, 117

Plasma proteins

   drug interactions and, 326

   pKa and pH and, 113

(+)/(-) Designation, 8

Polyethylene glycol (PEG), 343–344

Potassium hydroxide, 129, 137t

Potassium penicillin V, 128, 129

Pravastatin, 138t, 378–380

   hydroxyl group of, 142, 142f

   partition coefficients of, 142, 142f

   SARs of, 324t

Pravastatin calcium, 130f

Prazosin, 69, 69f

   conformational isomers of, 229–230, 230f

   SARs of, 319, 319f

Prednisolone, 324t

Prednisolone sodium phosphate, 146, 147f, 324t

Preferred conformations, 230–231

Prelog, Vladimir, 217

Presystemic metabolism, 299

Primaquine, 263, 263f

Probenecid, 289f

Procainamide, 65f, 334, 335, 341

   acetylation of, 293, 293f

   hydrolysis of, 278

   pKa of, 91–92

Procaine, 334, 335, 341

Prochlorperazine, 264, 265f

Prodrugs

   conversion from active drugs, 341–347, 342t, 343f–347f

   hydrolysis of, 276, 277f

   metabolism of, 246

   for water and lipid solubility, 146–149, 147f–149f

Proline, 38

   binding interactions of, 196t

Promethazine, 136f, 340f

Prontosil, 110–111, 111f

Propantheline, 338, 339

Propionic acid, 148f

Propranolol, 152–153, 152f

Propylthiouracil, 283f

Prostacyclin (PGI2), 170

Protamine sulfate, 115–116, 116f

Proteins. See also specific types

   acidic functional groups in, 177–178, 177f

   as biological targets, 17, 36

   ionic bonds of, 176, 176f

   sulfate conjugation and, 286

Proton pump inhibitors, 117

Protriptyline, 253f

Pteridine rings, 195f

Purine rings, 5

Purines, 12, 13t

Pyranose rings, 6

Pyridine, 68

Pyridine rings, 195f

Pyridostigmine bromide, 234, 235f

Pyrimidine rings, 5

   charge transfer reactions of, 195f

Pyrimidines, 12, 13t

Pyrrole rings

   aromatic heterocycles and, 68

   charge transfer interactions of, 194f

   as hydrogen bond acceptor/donor, 183f

Q

Quazepam, 270f

   metabolism of, 153, 153f

   partition coefficients of, 142–143, 142f

   SARs of, 324t

Quetiapine fumarate, 137t

Quinapril, 380–383

Quinazoline rings, 195f

Quinidine, 69f, 225, 225f

Quinine, 225, 225f

Quinoline, 68

Quinoline rings, 195f

R

Raloxifene, 285, 285f

Ramiprilat, 199, 199f

Ranitidine, 269f, 336, 337

Rearrangement reactions, 173, 173f

Reduction, 272–275, 272f–275f

Reinforced ionic bonds, 185, 185f

Resonance

   of carbonyl group, 20, 21f

   of carboxylic acid, 20

   of β-dicarbonyl groups, 54

   electron withdrawing functional groups and, 23

   of hydroxyl group, 20, 21f

   of nitrile group, 20, 21f

   sulfonamides and, 56

   of thiols, 60

Resonance delocalization, 67

Ribofuranose sugars, 6, 6f, 7–8

Ribonucleic acid (RNA), 12

   functional groups on, 40–41, 41f

   molecular modification and, 330–331

Ribose, 6, 6f

   alpha/beta (α/β) designation of, 7–8

Rizatriptan, 289–290, 289f

Rosuvastatin, 138t

R/S designations, 8, 216–220, 218f

Rule of Nines

   of carboxylic acid of PABA, 115

   for pKa and pH, 103–108

   for uric acid, 112

S

S-adenosylmethionine (SAM), 25, 295f

Salicylic acid, 73f

   amino acid conjugation of, 288f

   ionic bonds on, 114, 114f

Salmeterol, 189–190, 190f, 339

   oxidative N-dealkylation of, 261

Salts, 75–76, 75f. See also Inorganic salts; Organic salts

   from acidic functional groups, 136–137, 137t

   from basic functional groups, 75–76, 75f, 136–137, 137t

   defined, 128–129

   solubility and, 127–164

Saquinavir, 383–385

Sawhorse projections, 230, 231f

Schiff bases, 65

Serine, 38–39

   binding interactions of, 196t

   enantiomers of, 217

   hydrogen bonds of, 182

Simvastatin, 18–19, 19f, 138t

   hydrolysis of, 275, 276f, 278

   lipophilic functional groups of, 142, 142f

   methyl group in, 142, 142f

   partition coefficients of, 142, 142f

   SARs of, 324t

Single bonds, 3–4

S-methyltransferase, 294

Sodium chloride, 128

Sodium hydroxide, 128, 129, 137t

Sodium phosphate, 146–147, 147f

Sodium sulfacetamide, 75, 75f

Solubility. See also Lipid solubility; Water solubility

   in functional groups, 26–30, 27f–30f

   metabolism and, 152–154, 152f, 153f

   partition coefficient and, 137–145, 138f, 140f–143f, 145f

   of pH and pKa, 109–112, 109f–111f

Sorafenib, 386–388

sp2 hybridized centers, 253–256, 254t, 255f

Stedman, Edgar, 222–223

Stereochemical center, 7

Stereochemistry

   with biological targets, 175

   chirality of carbon, 210–213, 211f

   conformational isomers, 228–236, 229f–232f, 234f, 235f

   diastereomers, 224–228, 224f–228f

   drug actions and, 209–242

   enantiomers, 213–224, 214f, 215f, 218f, 218t, 221f–223f

Stereoisomers, 213

Steric effects

   with biological targets, 175

   of functional groups, 30–33, 31f–33f

   on pH and pKa, 86

Steric hindrance

   of enantiomers, 223–224, 223f

   in hydrolysis, 278

   on metabolism, 33, 33f

   SARs and, 318

Steroids, 9, 10f

Streptomycin sulfate, 137t

Structure activity relationships (SARs), 3, 311–326

   absorption, distribution, metabolism, and elimination (ADME) and, 320–323

   of ACE inhibitors, 320f

   ADME and, 321f, 322f, 324t

   adverse drug reactions and, 323–326, 325f, 326f

   of angiotensin converting enzyme (ACE) inhibitors, 319–320

   of beta-lactams, 314–315, 314f, 315f, 320–321

   binding interactions and, 316–320, 317f, 318f, 320f

   of doxycycline, 322–323, 322f

   drug interactions and, 323–326, 325f, 326f

   of HMG-CoA, 316f

   of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA), 315

   pKa and, 117

   of sulfisoxazole, 313, 314, 314f

   of tetracycline, 322–323, 322f

   "why" or "how" component of, 312–313

Sucralfate, 110, 110f

Sugars

   binding interactions of, 196t

   isomeric, 7

   numbering of, 5–6, 6f

Sulfacetamide, 75, 75f

Sulfamethoxazole, 68, 68f

   acetylation of, 293, 293f

   pH and pKa of, 110–111, 111f, 115, 115f

   SAR of, 313

   sulfate conjugation of, 287f

Sulfanilamide

   pH and pKa of, 110–111, 111f

   SAR of, 313

Sulfates, 60–61, 61f

   conjugation of, 281t, 285–287, 286f, 287f, 292

   ionization of, 175t

   pKa of, 71t

Sulfhydryl group, 60, 60f

   complexation of, 199, 199f

   electron withdrawing functional groups of, 23, 24f

   glutathione conjugation and, 290–291

   methylation of, 295

   as nucleophilic, 24

Sulfisoxazole

   conjugation of, 283f

   SAR of, 313, 314, 314f

Sulfisoxazole diolamine, 131, 132f

Sulfonamide group, 55–57, 56f, 140f

   as acidic functional group, 27f

   carbonic anhydrase and, 335, 337f

   conjugation of, 283f

   electron withdrawing functional groups of, 23, 24f

   as hydrogen bond acceptor, 187

   as hydrogen bond acceptor/donor, 186f

   ionization of, 175t

   nitrogen and, 70

   nonclassical isosteres of, 337t

   pH and pKa of, 71t, 115, 115f

Sulfone, 268, 269f

   as hydrogen bond acceptor, 186f, 187

Sulfonic acid, 27f

Sulfonyl group

   nitrogen and, 70

   pH and pKa of, 107

Sulfonylureas, 55–57, 56f

   as acidic functional group, 27f

   drug interactions with, 326

   as hydrogen bond acceptor/donor, 186f, 187

   hydrolysis of, 279f

   ionization of, 175t

   molecular modification of, 329–330, 329f

   pKa of, 71t

Sulfoxide group, 268, 269f

   reductions of, 275, 275f

Sulfur

   chelation and, 197

   chirality of carbon and, 210

   electronegativity of, 179t, 180

   methylation of, 295

   oxidation of, 268–270, 269f, 270f

Sulfuric acid, 129, 137t

Sulindac, 275, 275f

Sumatriptan, 56, 56f

T

Tamoxifen

   CYP2D6 and, 300, 300f

   Henderson-Hasselbalch equation for, 96

   oxidation of, 252, 252f

   pKa and pH of, 94–95, 96

   van der Waals interactions of, 189, 190f

   Z isomer of, 227–228, 227f

Tamsulosin

   conformational isomers of, 229, 229f

   SARs of, 319, 319f

Tartaric acid, 137t

Tautomeric forms, of β-dicarbonyl groups, 54

t-butylacetic acid, 148f

Telmisartan, 328f, 329

Temazepam

   metabolism of, 153, 153f, 245–246, 245f

   partition coefficients of, 142–143, 142f

   SARs of, 324t

Terbutaline, 18, 19, 317, 317f

Testosterone

   methyl group and, 34, 34f

   SARs of, 321, 321f

   steroid nomenclature for, 9, 10f

Tetracaine, 293, 294f

Tetracycline, 35, 35f

   chelation of, 198, 198f

   drug interactions with, 325, 325f

   metabolism of, 244, 245

   SARs of, 322–323, 322f

Tetrahydrozoline, 66, 66f

Tetrazole, 329

   ionization of, 175t

   nonclassical isosteres of, 337t

   pKa of, 71t

Tetrazole rings, 58, 58f

Thiazides, 75

   carbonic anhydrase and, 116, 116f

   mechanism of action of, 117

Thienopyridine, 167

Thiethylperazine, 268, 269f

Thioamide, 186f

Thiocarbonyl, 270, 270f

Thioesters, 186f

Thioethers

   as hydrogen bond acceptor, 183f

   oxidation of, 268

Thio-inosine monophosphate (T-IMP), 335, 336f

Thiols, 60, 60f

   electron withdrawing functional groups of, 23, 24f

   as hydrogen bond acceptor/donor, 183f

   ionization of, 175t

   pKa of, 71t

Thiopental, 270f

Thiophene rings, 194f

Thiophenol, 60, 60f

Thioridazine, 129

Thioridazine hydrochloride, 128, 129

Thiourea group, 337

   as hydrogen bond acceptor/donor, 186f

   nonclassical isosteres of, 337t

Threonine, 38–39, 180–181

   binding interactions of, 196t

Thromboxane A2 (TXA2), 170

Thymine, 12, 13t

Ticlopidine, 64, 64f

Timolol maleate, 132f

Tirofiban, 56, 56f

Tobramycin, 74f, 140, 141f

Tocainide, 341, 341f

Tolazamide, 257

Tolmetin, 266–267, 266f

Tolterodine, 193

trans conformations, 231, 231f

trans designation, 251

Transfer RNA (tRNA), 198

trans isomers, 226–227, 227f, 228, 228f

Transpeptidase, 169, 169f

Transport proteins, 74–75

   enantiomers and, 224

   omeprazole and, 347, 347f

Triamcinolone, 150, 150f

   acetone and, 150

   SARs of, 324t

Triamcinolone acetonide, 150, 324t

Trientine, 197, 197f

Trifluoperazine, 340f

Trifluoroethyl group, 142

Trifluoromethyl group, 139, 143, 270

Trimethadione, 54, 55f

Trimethoprim, 268f

Trimethyllysine, 40

Tripeptides, 10–11, 11f

Triple bonds, 3–4

Tromethamine, 137t

Tryptophan, 38

   aryl-aryl stacking interactions of, 192–193

   binding interactions of, 196t

   cation–π interaction of, 193

Tyrosine, 38–39

   aryl-aryl stacking interactions of, 192–193

   binding interactions of, 196t

   cation–π interaction of, 193

   hydrogen bonds of, 183, 184f

U

Uracil, 12, 13t

Urea group

   as hydrogen bond acceptor/donor, 183f

   nitrogen and, 70

Uric acid, 75

   in gout, 111–112

   pH and pKa of, 111–112

   Rule of Nines for, 112

V

Valacyclovir, 277f

Valeric acid, 148f

Valine, 38

   binding interactions of, 196t

Van der Waals interactions, 188–190, 189f, 190f

Verapamil, 98, 109–110, 109f

Vitamin K (phytonadione), 140–141, 141f

W

Warfarin, 73f

   drug interactions with, 326

   enantiomers of, 213, 214f

   metabolism of, 297–298, 298f

   reduction of, 272, 273f

Water solubility. See also Hydrophilic functional groups; Hydrophobic functional groups

   of catechol rings, 251–252, 252f

   drug interactions and, 326

   enhancement benefits to, 154

   lipid solubility and, 144–145, 145f

   in metabolism, 244

   metabolism and, 152–154, 152f, 153f

   optimizing, 146–152, 147f–151f

   prodrug conversion and, 342t, 343

   SARs and, 312, 323

Z

Zafirlukast, 56, 56f, 370–372

   pH and pKa for, 100

Zaleplon, 264, 265f

Zanamivir, 152, 152f, 388–390

Zidovudine, 331, 331f

Zileuton, 197–198, 198f

Z isomers, 227–228, 227f

Zwitterion form, 151